Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 9(1): 228-235, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38110361

RESUMO

The practice of monitoring therapeutic drug concentrations in patient biofluids can significantly improve clinical outcomes while simultaneously minimizing adverse side effects. A model example of this practice is vancomycin dosing in intensive care units. If dosed correctly, vancomycin can effectively treat methicillin-resistant streptococcus aureus (MRSA) infections. However, it can also induce nephrotoxicity or fail to kill the bacteria if dosed too high or too low, respectively. Although undeniably important to achieve effectiveness, therapeutic drug monitoring remains inconvenient in practice due primarily to the lengthy process of sample collection, transport to a centralized facility, and analysis using costly instrumentation. Adding to this workflow is the possibility of backlogs at centralized clinical laboratories, which is not uncommon and may result in additional delays between biofluid sampling and concentration measurement, which can negatively affect clinical outcomes. Here, we explore the possibility of using point-of-care electrochemical aptamer-based (E-AB) sensors to minimize the time delay between biofluid sampling and drug measurement. Specifically, we conducted a clinical agreement study comparing the measurement outcomes of E-AB sensors to the benchmark automated competitive immunoassays for vancomycin monitoring in serum. Our results demonstrate that E-ABs are selective for free vancomycin─the active form of the drug, over total vancomycin. In contrast, competitive immunoassays measure total vancomycin, including both protein-bound and free drug. Accounting for these differences in a pilot study consisting of 85 clinical samples, we demonstrate that the E-AB vancomycin measurement achieved a 95% positive correlation rate with the benchmark immunoassays. Therefore, we conclude that E-AB sensors could provide clinically useful stratification of patient samples at trough sampling to guide effective vancomycin dose recommendations.


Assuntos
Infecções Estreptocócicas , Vancomicina , Humanos , Antibacterianos , Projetos Piloto , Soro , Oligonucleotídeos
2.
Nat Metab ; 5(3): 466-480, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36941450

RESUMO

The sense of taste is an important sentinel governing what should or should not be ingested by an animal, with high pH sensation playing a critical role in food selection. Here we explore the molecular identities of taste receptors detecting the basic pH of food using Drosophila melanogaster as a model. We identify a chloride channel named alkaliphile (Alka), which is both necessary and sufficient for aversive taste responses to basic food. Alka forms a high-pH-gated chloride channel and is specifically expressed in a subset of gustatory receptor neurons (GRNs). Optogenetic activation of alka-expressing GRNs is sufficient to suppress attractive feeding responses to sucrose. Conversely, inactivation of these GRNs causes severe impairments in the aversion to high pH. Altogether, our discovery of Alka as an alkaline taste receptor lays the groundwork for future research on alkaline taste sensation in other animals.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Drosophila melanogaster , Paladar/fisiologia , Canais de Cloreto/genética , Proteínas de Drosophila/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo
3.
Nat Commun ; 12(1): 3730, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140480

RESUMO

Acid taste, evoked mainly by protons (H+), is a core taste modality for many organisms. The hedonic valence of acid taste is bidirectional: animals prefer slightly but avoid highly acidic foods. However, how animals discriminate low from high acidity remains poorly understood. To explore the taste perception of acid, we use the fruit fly as a model organism. We find that flies employ two competing taste sensory pathways to detect low and high acidity, and the relative degree of activation of each determines either attractive or aversive responses. Moreover, we establish one member of the fly Otopetrin family, Otopetrin-like a (OtopLa), as a proton channel dedicated to the gustatory detection of acid. OtopLa defines a unique subset of gustatory receptor neurons and is selectively required for attractive rather than aversive taste responses. Loss of otopla causes flies to reject normally attractive low-acid foods. Therefore, the identification of OtopLa as a low-acid sensor firmly supports our competition model of acid taste sensation. Altogether, we have discovered a binary acid-sensing mechanism that may be evolutionarily conserved between insects and mammals.


Assuntos
Ácidos/metabolismo , Vias Aferentes/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Neurônios/metabolismo , Vias Aferentes/fisiologia , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Eletrofisiologia , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Imuno-Histoquímica , Malatos/metabolismo , Microscopia Confocal , Mutação , Neurônios/fisiologia , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes , Paladar/fisiologia , Percepção Gustatória/fisiologia
4.
J Vis Exp ; (168)2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33645577

RESUMO

To select food with nutritional value while avoiding the consumption of harmful agents, animals need a sophisticated and robust taste system to evaluate their food environment. The fruit fly, Drosophila melanogaster, is a genetically tractable model organism that is widely used to decipher the molecular, cellular, and neural underpinnings of food preference. To analyze fly food preference, a robust feeding method is needed. Described here is a two-choice feeding assay, which is rigorous, cost-saving, and fast. The assay is Petri-dish-based and involves the addition of two different foods supplemented with blue or red dye to the two halves of the dish. Then, ~70 prestarved, 2-4-day-old flies are placed in the dish and allowed to choose between blue and red foods in the dark for about 90 min. Examination of the abdomen of each fly is followed by the calculation of the preference index. In contrast to multiwell plates, each Petri dish takes only ~20 s to fill and saves time and effort. This feeding assay can be employed to quickly determine whether flies like or dislike a particular food.


Assuntos
Bioensaio/métodos , Drosophila melanogaster/fisiologia , Preferências Alimentares , Animais , Corantes , Comportamento Alimentar , Indicadores e Reagentes , Inanição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...